导语:Andreessen Horowitz(a16z)是美国目前的顶级风投之一。他们刚刚撰文描绘了未来他们重点关注的16个领域,看完你会觉得,未来其实比想象的还要近呢。本文由醉创业(微信公众号:醉创业)编译。文章比较长,最后有16点的摘要。
其实我们不按「主题」投资,我们投资的是拥有突破性创意的创业者。所以我们一般不会按照某个行业预设的一些理论进行投资。虽然这样说,我们也同时在做一些思考和观察。下面这16个领域就是我们未来会重点关注的投资领域:
1.虚拟现实(VR)
在虚拟现实(VR)的世界里,「临场感」是一种艺术。这是说,一旦VR达到了某种水平,你的大脑就被欺骗了——在最原始最底层的层面——你就会认为你眼前看见的东西是真的。有研究表明,即使你的理性告诉你并没有真的站着一个悬崖边,你鼓起所有勇气准备往下跳,你的原始的掌管动作的大脑部分也会阻止你那么做。
有了「临场感」,你的大脑会让你感觉自己不是带了一个设备而是浸入了一个不同的世界。
计算机狂热者和科幻小说作家已经期待VR几十年了。但是早期的尝试,尤其是90年代,很让人失望。因为那时候技术还没有准备好。而由于摩尔定律、以及移动设备蓬勃催生的处理器、屏幕和加速仪等技术的发展——VR终于进入到主流世界了。
我们用一个专有名词「终止怀疑」(suspension of disbelief)来形容我们看电视和电影的体验。这也是说我们在看电影电视时的默认状态是「不相信」。我们只有在足够浸入的时候才能真的「相信」。
而VR技术,情况反了过来。大脑的默认状态是「相信」,相信我们看到的东西是真的。一切从「太无聊」变成了「太强烈」。我们需要不断提醒自己我们看到的不是真的。「终止怀疑」变成了「终止相信」。
这意味着有一些软件在VR环境里可能难以成功。比如像《使命召唤》这类大型游戏如果做出VR的东西也许会更令人感到害怕和不安。
而更可能成功的是一些简单的体验。比如:穿越时间看看古罗马是什么样子;攀爬摩天大楼以客服恐高症;为飞机降落进行精准训练;迅速回到你上次度假的地方(因为你当时拍摄了「3D照片」);和一个失联很久的朋友吃个午餐;像如今在现实生活中与人合作一样,在VR世界中和人建立联系与信任。
未来几十年的VR,会像开始几十年的电影一样。电影制作者一开始什么都不知道:如何编剧、如何拍摄、如何剪辑等等。他们花了几十年的时间,建立了电影语言。在VR上我们也将进入这一时期。
VR上会出现很棒的游戏,并且它可能在很长时间里都会占据VR这个领域。但从长期来看,游戏只是媒体的一小部分。最开始的电视节目就是新闻栏目和游戏类节目,但如今电视屏幕已经被视为承载内容的输入/输出工具了。
VR会是终极的输入/输出工具。有些人把VR称作「最后的媒体」,因为之后任何媒体都可以在VR之内,用软件产生。回看历史,如今我们在用的电影和电视屏幕可能是电的发明以及VR发明的一个中间状态。孩子们会觉得,他们的祖先原来会盯着一个长方形的东西看并且希望自己相信里面发生的事。
2.企业的「传感器化」(Sensorification)
几年前,一群消费级(2C)的互联网公司看到手机后说了一句「我靠」。他们都看到了,所有的流量以后都会来自于手机而不是PC。为了利用手机带来的商机,以前做的一切都要重做。直到现在,还有公司仍在进行这个转变(而有一些甚至还没开始)。
而在今天的企业环境中,类似的事情也正在发生——企业服务也要迎来「我靠」的时刻了。但这并不是把企业服务带到移动端这么简单。可做的远不止如此。
想想如今智能手机所展示的无限可能性。智能手机的形式及其功能的复杂性都将商业形式引向了以前无法想象的境界(比如共享乘车服务等)。而其中最重要的原因就是行业的「传感器化」,加上移动端的浪潮以及友好UI的共同作用。
同样的「传感器化」也要进军企业环境中。
企业UI严重落后。所有那些在智能手机上习以为常的操作动作——缩小,放大,滑动,点击,语音,甚至单纯用手指随意移动——在企业环境中都没有实现。用户界面永远是最后被考虑的,是建完数据库后做的最后一件事。这种情况正在变化。
那么「传感器们」从何而来?想想手机的特点。我们并没有那么多屏幕或者功能可以使用。传感器基本上是连接到信息和动作的「快捷方式」,用户不需要什么操作。比如,我们不用每次都手动输入地址,GPS只要简单地告知手机「你在这儿」就可以自动处理下一步工作了。
在企业环境中,传感器的价值在于成为用户界面的快捷键,甚至有可能消灭打字,然后我们就可以把注意力放在简单,有趣又有创意的事情上了。
3.机器学习+大数据
在a16z, 我们认为「大数据」和「机器学习」是相关的两件事。一直以来,人们认为需要对各种数据进行更深入地分析和洞察,这点当然是重要的,因为直到现在我们一直都处在大数据的收集阶段。但在大数据的世界里,最令我们兴奋的创新点是,我们来到了预测阶段——处理收集到信息的能力、学习模式的能力以及基于已知预测未知的能力。
机器学习之于大数据就如同人类学习之于生活经验:人类归纳和总结过去的经验来处理陌生情况。而大数据中的机器学习会复制这种行为,并且是在一个巨大的量级上。
过去的商业智能 (Business Intelligence) 表现为对以往的关注(「在肯塔基州已经卖掉了多少双红色鞋子?」),现在我们则需要预测性的观点(「在肯塔基州将要卖掉多少双红色鞋子?」)。重要的是,机器学习并不是目的本身,它是每个应用的一个「属性」。它并不是一个独立的功能,「Hey,让我们用这个工具来预测吧。」
以Salesforce为例。目前它只能呈现数据,用户要自己分析这些数据,产生自己的观点。然而我们中的大部分人都被Google训练过了,习惯了从成千上百的可能性中筛选要使用的信息来定制我们自己的用户体验。为什么机器做不到呢?企业应用——在每一个能想象出来的案例里——也将更加智能,因为机器可以在海量的数据中不断学习并发展出「观点」。它就像是做任何事的时候都可以帮到你的一个聪明且经验丰富的助手。
在这里,关键的是要形成大数据本身就能带动应用程序来做出动作,而不需要人工干预。(我的同事Frank Chen称它为程序建筑中的「内部大数据」)。
但所有这些都会在基础设施层面推动创新,同时也从中获益。
大数据需要大计算:Hadoop和Spark在大数据技术版图的什么位置
把大数据和机器学习看作三步:收集,分析,预测。目前为止,这些步骤彼此分离,因为我们一直以来都从底层建立生态系统——选择各种工具——并进行针对性实践。
早期的Hadoop堆栈就是收集和储存大数据的例子。它允许其在一大群廉价的服务器上进行简易的数据处理。但Hadoop MapReduce则是批量处理的系统,并不太适合交互式应用;像数据流处理的实时操作;以及其他更复杂的估算。
对于预测性分析,需要一些基础设施,能更快响应人类级规模的交互:今天发生的哪些可能会影响明天?需要一直有大量持续的迭代,让系统智能,让机器「学习」——探索数据,将其形象化,建模,提问,得出答案,导入其他数据,然后重复该过程。
越实时,粒度越细,我们就可以更快响应,更有竞争性。
旧世界中「小数据」的商业智能(BI),只在数据库上放一个小型应用驱动就足够了。而现如今,我们要处理千倍于以前的数据,所以为了速度能跟上,我们需要平行的,以内存为存储机制的的的数据发动机(data engine)。为了大数据能解锁机器学习的价值,为我们在应用层面就展开部署。这也就意味着「大数据」需要「大计算」。
这就是 Apache Spark 的作用了。因为它是堆栈中内存、大计算的部分,比Hadoop MapReduce 快上百倍。同时它还能提供交互性并不局限于批量模式。Spark 在哪儿都能运行(包括Hadoop),把大数据处理环境转换成实时数据捕捉和分析环境。
在大数据/大计算生态系统中的每一层面我们都有投资,而这个领域仍有很多创新的余地。因为大数据计算已经不再局限于单一的政府机构和大公司了。即使早期的应用更倾向于出现在数据科学家工作的行业,机器学习作为所有应用的「属性」——尤其是和一个友好的用户界面相结合的时候——就能让大数据进入到各个不同领域,而在这基础之上有机会诞生出很多伟大的公司。
我相信每款应用都将重构来利用此趋势。同时感谢大数据和大计算的革新,让这一切成为可能。我们处在机器智能加速时期的起始阶段,这会对商业体系和社会产生无限益处。
定义
-大数据:收集大量的信息,无论是结构性的还是非结构性的。
-大计算:从大数据中提取价值所需的大规模(一般来说是平行的)处理能力。
-机器学习:计算机科学的一个分支,不用高级别的算法来解决明显的,命令式的逻辑问题,而是用低级别的算法来发现暗含在数据中的模式。(想想人类的大脑从生活经验中学习vs.从明确的指示中学习的区别)有越多的数据,学习就越有效,这也是机器学习和大数据会复杂地联系在一起的原因。
-预测性分析:用机器学习来预测未来的产出效果(外推法),或者从已知中推断未知数据点(内推法)。
4.全栈型创业公司
Q:什么是全栈创业公司?你曾经提到过,这是一个非常重要的新趋势,而且是近年来成功创业公司的很典型模式。
Chris Dixon: 传统的创业公司采取的方式是向企业兜售他们的新技术或者寻求授权。新的全栈创业公司则建造了一个完整的、点对点的产品或者服务从而绕开实体企业或者竞争者。
大公司中很好的对比就是苹果和微软。常年以来,微软只建造全栈当中的一小部分,如操作系统、应用程序。同时依靠合作伙伴生产半导体硬件、文案、组装、零售等等。苹果公司却全部一起做:他们设计自己的芯片、手机软件、操作系统、应用程序、包装、零售等等。苹果告诉世界:如果你可以同时把很多事情一起做好,那么你就有可能创造奇迹。
Q:举个例子?
Dixon:我觉得一个很好地例子就是共乘,例如Lyft和Uber。
在这些公司成立以前,很多创业者试图建立一个让出租车和私家车利用率更高的软件。然后他们出外寻找出租车公司并且向他们推销,使用他们的软件。
基于各种各样的原因,这并不奏效。出租车公司并不会把这些软件作为一个竞争优势。他们并没有一个合适的估价机制或者相关人员去评估这样的软件。
所以,当技术创业者试图将自己的技术和软件应用到这些企业里时,很难成功。
此时,像Lyft和Uber这样的公司说:「既然如此,与其把我们的产品卖出去作为一个锦上添花的东西,不如使用我们的软件打造整个服务行业。」他们想:「如果我们利用现有技术重头开始,整个行业会是怎样的?」
一旦他们真的做成了,消费者和司机都非常喜欢,这几乎改变了整个行业,而这些公司才创建了几年而已。
Q:自己建立这种点对点的公司的好处是什么?
Dixon:首先,正如我之前提到的,全栈公司使得创业者得以绕过传统企业以及对新技术抗拒的企业文化。
另一个好处就是全栈企业能获取更多的经济利益。在这之前,虽然他们提供的技术和服务可能非常有价值,但是由于和用户没有产生连接,很难直接从客户身上获利或者搜集正确的数据从而更新自己的产品。
最后,对用户来说,全栈创业公司带来更好的用户体验。因为一切尽在掌控之中。这里的区别就是买到一个美好纯正的苹果产品和买到一个由不同小贩组装而成的产品的区别。
Q:嗯,那这是不是所谓的「垂直整合」呢?
Dixon:我觉得全栈创业公司并不是我们传统观念里的垂直一体化企业。因为这并不是一个卖油的公司买了供应商,而是一个科技公司建造了一个完成的系统从而使得非科技公司为其服务。在我的观念里,「垂直整合」公司是一个过重而不太实用的说法。
但是诚实地说,我有点后悔称之为「全栈」。这只是一个比喻而已。这只是对这种模式的一个异想天开的影射说法。「端到端」(end to end)可能更好一些。或者还有一个词是Blii Davidow说的「全产品」(whole prodcut)。
Q:除了你已经分享的例子,还有哪些是全栈企业的例子。
Dixon: Altschool, Buzzfeed, Harry’s, Nest, Tesla, Warby Parker。
Q: 接下来会发生什么?
Dixon: 我认为我们将会看到很多拒绝新技术的传统行业越来越接受新技术,而创业公司也能找到自己的一席之地。
大而显著的行业包括:教育、健康、食物、运输以及金融服务。任何价格增长超过通货膨胀的行业都是由于缺乏技术支持。
Q:对于全栈创业公司来说最大的挑战是什么?
Dixon: 全栈型创业者关注产品或者服务的方方面面,所以他们需要在除了软件、硬件、设计、营销、供应链管理、销售、合作关系、企业规章制度之外的各个方面都有所建树。需要非常全能的人才能做到。
好消息是一旦他们成功了,对于竞争者来说是极难模仿的。用这种全栈型创业模式将会开创伟大的公司。
5.Containers(注)
试想一下,现在所有APP可以在同一台智能手机上运行的手机不存在,每一个APP都需要一个新的独立的硬件支持。也就是说如果你要实现发邮件、玩游戏等功能的话,你得带着一袋子的手机走来走去。
这听起来不可思议,但是原本的模型设想就是这样的:不同的应用程序有不同的硬件支持。即便一个APP不被使用,硬件和操作系统照常需要运行,仍然耗费电力和资源,实在是低效。(用一袋子手机打比方来说就是:即便你今天使用的功能只是发邮件,但是这一整天,你还是得带着你那个用于玩游戏的手机走来走去)。
随后就出现了虚拟机,运用集成电脑的思路使得各种APP能够在同一个硬件上运行。因为软件可以在硬件上独立运行,从而使得内存的利用率提高了3到10倍。从数据中心的角度来说,虚拟机使得我们并不局限于一个特定的操作系统,我们可以在同一台机上同时运行Windows和Linux两个系统。弊端在于,虚拟机必须倚仗一层夹在硬件和操作系统中间的全新软件系统来实现,同时还需要一个全新的操作系统来管理。这就像一个操作系统叠加另一个操作系统,从而大大影响手机的运行速度,客户体验也变差。
如果虚拟机可以直接在CPU上运行,并不需要中间层来实现,那么这将会是一个完美的解决方案。
所以这就是为什么Container出现了。Container和虚拟机实现的目的是一样的,是为了实现APP能够在硬件上共同运行的另一种方式。但是Container可以在不倚仗中间层的情况下运用智能化控制实现应用程序的独立存在和独立运行。
为什么是现在出现?接下来将会发生什么?
Container并不是一个全新的东西。他们存在有一段很长的时间了。但是现在风靡也是有原因的。一是因为Windows在数据中心没有那么流行了。和集成器相比,虚拟机存在的劣势在于无法在集合型操作系统上运行。就像Windows在Linux上运行。二是微型服务APP的架构使得Container充满动力。这些APP架构非常适合Container,因为他们可以像乐高积木一样独立拼接。
系统管理人员发现Container之所以好的秘诀在于,它适用于应用程序的方方面面,无论是设备本身、操作系统或者其他相关的部分,它都是一个集合的整体。同时在避免超负、负荷、以及功能测试等各方面都有所提高,从而使得将很多Container放在同一主机并实现移动的便利变得非常容易。
在我看来,Container的下一步在于数据中心的完善,将所有的Container统一为一个大电脑或者一个客户终端。现在很多的应用程序就像分散的系统,应用程序没有被设限于一个container内。一个应用程序可能存在10个Container在一起运行。如果有1000个应用程序,就有10000个Container在运行。或许我们可以使用一个包含全部相互依赖的应用程序的大数据库。
所以这就需要一个总枢纽,管理操作环境并在考虑合理负荷、可靠性以及操作性的基础上,使其被充分利用。这也是衡量一个数据中心运行良好与否的关键。最重要的是对整个操作环境的综合掌控。这也正是目前亟待实现的。
注:Container:容器,是在编程语言中封装和跟踪零个或更多个组件的对象。
6.数字健康
整个美国只有约100万的医生,但他们马上就有帮手了。
想想CT扫描,或者任何现代医疗设施,离开了里面的代码它们就什么都不是。写代码的人很有可能没有医疗背景,他只是被医疗设备商家认可并雇来写程序的。如今,代表着现代医疗基础的设备通常由懂编程但没有医疗背景的人编写,由懂医疗但不懂编程的人操作。
所以,很大一部分的医疗其实是由没有医疗背景的人实现的。
此外,设备的内部工作机制像黑盒子一样; 医生们通过销售方提供的UI进行操作,通过检索他们脑中的数据来分析读数。不过UI正逐步优化,对医生的分析能力的要求也越来越低。医生是受益者——设备让他们不必那么费力就得到正确的答案。它们也越来越普及了,通过逐步复杂的程序设计,医疗设备不仅可以由专科医生使用,逐渐也可以由全科医生,护理师,护士,甚至是普通大众也可以通过手机附带的硬件或App来操作。
随着多种个人基因组学,量化自身(quantifed self),移动诊断技术越来越普及,前文提到的最后一步也开始实现了。这些技术从人的身体中获得数据,并将这些数据存储在我们的手机里,而对数据的分析将由软件来实现。
因此,由非医生进行的医疗诊断更多了。
核心是移动的可编程的医疗记录,存有所有的诊断和测试结果,就像Apple的HealthKit,其核心就是一系列的数据容器,装着你的心率、血压、锻炼等等一系列的数据。
这些诊断史并不一定就是「大数据」;只是这些数据之前没有被追踪或者交叉比对。一旦类似HealthKit的技术获得牵引,上百万的软件工程师都可以在没有医疗背景的情况下开发新的应用,而不用伤害到用户。
现在你会毫不犹豫地接受这样一个事实:车库里的没有什么学历的男孩可以写出一个前端程序来分析你的邮件,告诉你何时是最佳的回复时间,或用你的邮件数据做出一些有趣,意想不到又很有价值的事。明天呢?也许你很快就会开始更多地依赖车间里开发出的iPhone应用而不是医生来分析你的个人诊断数据了。
7.在线市场
我们持续看到在线市场(例如电商)上的巨大变革。第一代网络公司已经见证像eBay和Craigslist这样的公司成为同行业市场的赢家。但是企业家们还在创建下一代的在线市场。
很多非常有趣的网络商家仍建立在「掏空」Craigslist的基础上,致力于在Craigslist的主要类别上更好地服务用户(例如:转租/短租,假期出租,共乘)。
移动设备使新一代的「移动第一」的市场显示出卓越的易用性,并可以在一天中不断获取市场上的信息。
一类具体的移动应用市场是「人才市场」(我之前谈到过),消费者可以享受特别定制的服务,合同工也可以借此寻找机会。
在线市场被应用到新的领域。其中之一就是将市场动态用于服务商业需求,比如B2B大型设备租赁。
这仅仅是开始。
尽管现在市场出现了很多新的形式(与10-15年前我在eBay看到的相比),我坚信从前的原理仍然适用。
为什么?因为「完全竞争市场」。经济学一贯认为这只是一个理论结构,但依据我在很多电商的工作经验,我认为这在现实世界中是真实存在的。
现今的新市场必须培育管理「完全竞争市场」来发展壮大。
首先,什么是「完全竞争市场」?投资百科将它定义为能满足以下五个特征的市场结构——我用eBay的例子来解释:
√ 所有公司销售同一产品。显然不是在eBay上出售的所有商品都相同。但是只有少数商品是真正的独特——“孤品”。最终可比商品间的竞争会带来边际收益和边际成本,通过竞争减少市场的盈余利润。
√ 所有公司都是受价者(price taker)。在eBay上,每个卖家都被迫接受买家愿意为商品支付的价格。一些卖家可以基于交易建立起的信誉要求少量加价,但也是很小的数额。
√ 所有公司拥有相对小的市场份额。因为有大量卖家销售各类的商品,没有任何一个卖家在某一品类占有大量市场份额。在eBay上没有卖家对整个市场有控制力。
√ 买家完全了解商品的市场行情和价格变化。所以市场的工作就是整合商品各维度的透明信息,包括规格参数,成本,安全性。如果奏效参与者会被告知,如果无效久而久之他们就会离开。
√ 进入和退出一个行业自由。由于进入(和退出)的壁垒很低,这些市场相对平衡有效。eBay上每种品类的竞争都是动态的,但受平衡作用边际收益和边际成本会一直相等。
管理市场的首要工作就是保护,维持并增强这些主要原则。在eBay为了达到这点,我们遵循以下真言:
√ 维持一个公平竞争的环境,每个参与者都有机会通过个人努力而成功。
√ 维持一个完全透明的市场使参与者(尤其是买家)充分了解商品的行情。
√ 致力于安全性使市场为双方提供尽可能安全的环境以增强彼此信任。
√ 为卖家促进更好的经济赋权,建立有效结构,使卖家可以达到市场费用。(我在管理eBay时,我们估计超过一百万的卖家靠在我们上平台赚到的钱生活。)
上面说的没什么特别的。但是令人惊讶的是极少有市场在这些原理上投资。
8.安全
目前由两个方面推动着网络安全行业的发展:
1、坏家伙们已经进入了系统
2、云服务和手机——新的平台已经出现
这两点使不同技术和新类型的公司得以产生。
如果我们首先考虑新平台,那问题归根结底就是:当无法再用防火墙保护数据的时候我们该怎么办?我们要怎样去保护手机和云储存里的数据?而传统的数据安全公司都是针对我们的个人数据中心或者个人电脑提供保护。(我说的「保护数据」是指使它远离病毒,且数据不会被提取。)
但是当存在威胁的环境离开个人电脑和个人数据中心转向云服务和手机时——当计算平台发生转变——一批新型公司应运而生。平台转变之时,可能就是新的特许经营企业出现之日。
同样,我们还会满脑子想着坏家伙们已经潜入了系统。
系统被入侵所产生的威胁之巨大,以致于世界上所有的公司不得不认清情势:他们不仅将遭到网络攻击,黑客也已经潜入系统内了……他们只是不知道而已。
于是,在网络攻击发生之时及之后,一批新的公司开始启动并发挥作用。其中一类公司是通过识别破坏是否已经发生以及何处遭到破坏,继而锁定目标,使危害不致蔓延。
另一型公司则是使用技术来观察我们的网络内容和运行情况,持续不断地监控组织内部的正常网络流量并对数据加以存档。一旦发现异常情况,要么对其进行锁定,要么采取其他举措。
这种类型的公司成为一个非常有趣的类别,因为每个人都会遭到网络攻击,所以当异常情况发生时,只是人们反应快慢的问题。
在网络安全领域,我关注的最后一类公司,可以称为反制措施公司。我们怎样反制攻击者从而扭转局势?我们怎样展开进攻?这是维护网络安全的辅助性举措,是稳定凳子的另一条腿。当网络攻击越来越复杂、导致的损失越来越巨大的时候,这种类型的公司就会获得更多的发展。人们越来越感觉到,在网络安全行业如果不采取反制、不以毒攻毒,就意味着自取灭亡。
9.比特币和Blockchain(最大规模访问量最高的比特币钱包服务提供商)
今年需要思考的三件事:
1.机构接受度
请耐心点儿---比特币合法化仅一年!尽管比特币源代码2009年就出现在网上,直到2014年4月IRS才让其变得合法(2013年12月纽约时报才发布了文章呼吁禁止比特币)。仅仅几个月后,之前和现任官员门便公开嘲笑这一想法并热情地接受了比特币。
也就是说比特币此时才被更为广泛地接受。我们预计今年接受它的机构会有大幅增长。具体来说,很多公司会关注对他们来说比特币意味着什么——可能明年我们就会开始听到人们问「你的比特币策略是什么?」
2.作为一个新的渠道, 比特币带来新的支付工作量
比特币与传统汇款系统不同,就像互联网和电话网络不同一样。你不能指望1988年的电话线路一天能容纳数以百万的推送和点赞,传送几个G的文件或P2P应用。此外,比特币的主要用途不再只是实现「更好的电子转账」 ,就像互联网不再主要用于拨打长途语音电话而已。
我们应该期待全新的应用,因为比特币更适合非常小额,非常大额,非常快速,非常国际化的和自动化的交易——而非遗留下来的传统支付渠道。也许从因为信用卡公司的要求而无法用美元完成支付的低风险的、数字化产品开始,基本上就是那些太小额、太奇怪或者太国际化的东西。
3. 作为基础设施的比特币
让我们将一款有内在价值的App作为比特币的一个应用,这不包含任何明确的价格或价格偏好。这就是典型的用Satoshis语言在Blockchain平台编写数据,无论定价为$1还是$100都同样有效。例如,Blockchain可以作为一个身份提供者,亦可作为登录证明存在的分布式数据库。由于它们对于价格波动的稳定性,我认为这类应用会是最受欢迎的比特币工具。
10.云-客户端计算
整个计算产业的历史就是集中式计算和分散式计算的潮起潮落。一开始我们用的是大型机和终端机,所有在大型机上集中运行的东西都会在终端机上展示,后来我们改用更分散的客户端-服务器模型,即一些东西(比如数据库)在服务器上运行,其他(例如CPU利用率和图像)则在客户端上运行。
再后来从广义上讲我们转移到了网络,计算在云端进行,结果展示在网页或者手机屏幕上。这看起来似乎是分散式的——但其实所有事物都更加集中在了「云端」,各类端点只展示云上产生的东西,端点其实只是所有事物的一个接口。
但是如今通过智能手机我们手里掌握了比几十年前大型计算机时代更强大的处理能力,所以为什么不能将云上的处理转移回端点,转移到手机上呢?本地化处理有其优势,比如说,端点的CPU和存储成本比服务器上的CPU和存储便宜1000倍。而且世界上很多地方,网络连接和数据传送的成本有时候比设备高得多。事实上,端点成为自身的数据中心,或者容器(或容器的某些形式)从手机回归数据中心以及其他可能性并不是不可以想象的事情。
关键是没有人需要冷却这些设备,这就像是端点免费计算,如果你能控制每个人闲置的CPU和存储能力来分散工作量的话,我们能完成的工作将增加一整个数量级,这其中的潜力还远远未被开发。
以前我们使用客户端-服务器模型的地方,现在都是使用更加分散式的云端-本地计算(Gartner称之为「云/客户端计算」)。这种方法在端点运行有状态的智能应用程序并存储数据,所有东西都与后端的云同步,如果操作系统在端点上并且我们可以控制该端点,那么你就可以在端点之间实现流动性的移动,没有哪个实体能支配或控制整个系统。
注意,端点不只是手机,他们可以是可穿戴设备以及其他小设备和链接到网络的显示屏,通过这些设备连接起来的是无比强大的计算能力。计算领域的下一个十年就是关于如何利用这种能力做点什么的十年。
11.众筹
当我们口袋里天天揣着一部智能手机的时候,我们可以通过众筹随时投资任何东西。
直到现在,众筹大部分时候还只是一种偶尔的在PC端上进行的体验。当然了,我们有可能一年也会支持几次新产品发布或者慈善事业,但这不是什么每天都会做的事情。这种情况即将改变,随身携带智能手机,我们不光可以随时登录众筹平台,而且可以随时接触到构成了我们生活中各种社交圈里的人——从家里到学校、从公司到我们居住的社区。
众筹和我们手机上其他一切事物一样简单易用、查看即时且使用频繁,它将很快成为人们实现自己想法的重要方式——不管是大创意还是小灵感。众筹将成为我们调动集体财务力量的途径。
在手机上轻轻一点你就可以帮助支持一场政治竞选、组织一次学校野餐、为你的蜜月旅行筹资或者支付一只宠物的手术费用。仅在过去的一年,Snoop Dogg通过众筹集资为Des Moines打橄榄球的孩子们买了头盔和设备;Conan O’Brien通过众筹卖木质表情符号为儿童保护基金筹款;社区居民们团结起来支持经营困难的本地零售商。这仅仅是其中的一些例子。
众筹正在走向之前从未涉足的领域——它正走向主流,这一点反过来也将会改变很多其他事情。
12.物联网(Internet of Things)
当谈及物联网对所有旧东西产生的影响时,我们会注意到那些闪亮的新连接起来的小工具,而常常忽视某些东西。在旧东西上添加多个传感器然后将它们连入互联网,我对此非常着迷。
就拿微波炉来说,尽管大家都在慢慢改进,但从20世纪70年代起,微波炉并没有发生太大的实质性的变化。但是,当你(给微波炉)装上各种其他的传感器,如照相机、电子秤、条形码阅读器等的时候,它就能够「看到」你把什么东西放进烤箱,识别食物的品牌和营养成分,甚至可以称重。通过查询云端数据库,它能得知做出可口饭菜所需的时间和强度。随着次数的累积,微波炉学习着按照你喜欢的方式烹饪食物。所有我们需要做的只是提供原材料和关上微波炉的门,剩下的就交给这台连网的微波炉吧。
以上情况有时会简化,一个有趣的问题是,如果给任何一个物品装上链接网络的开关,会发生些什么。和微波炉一样,我们将得到诸如:一所能够在合适的时间加热到合适温度的房子;一扇停进车时开启,开出车时关闭的车库门;为所有设备省电等等喜闻乐见的好处。
我们往往更关注荣耀,但平凡也同样重要,甚至更强大。当下,存在着一种有意怀旧的文化。但是,物联网可以带来改变并创造出修缮的新文化。如果你拥有一家家庭管理的小餐厅,不断升级或修理设备令你们不堪重负,现在有了物联网,你能够回答以下问题:是不是因为有人打开了左边的门,导致冰箱额外负载?或因为压缩机失灵,你将失去6000美元的食物?借助计算功率消耗模式、音频波等等信息,能够分析并确定是否需要,在什么时候以及这些设备应该怎样运行。
物联网正在带领我们进入一个不太可能遭受灾难性毁灭的世界, 或者至少,我们总能得到提醒吧。在这个世界里,我们到家的时候,大门会自动解锁欢迎,与此同时,一顿精心烹饪的饭菜也已热气腾腾地等在桌上了。
13.在线视频
YouTube为用户提供无数的视频资源是一个伟大之举,但在帮用户赚钱这一点上,它做的不是很好。原因很可能如下:广告商不愿意为他们没审查过的用户发布的视频支付溢价。
在分享视频的年收入上,YouTube会很吝啬,因为其不存在也可以覆盖如此范围的用户是主要的竞争对手。但是现在,就像创业者们慢慢通过建造垂直性的平台慢慢掏空Craigslist那样,很多公司开始打造自己的产品来掏空YouTube了:
许多创业者在建立以一些YouTube分类为垂直目标的公司,努力提高该分类下的用户体验或与用户分享更多的收入。早期案例集中在更短的视频、视频广告、在线视频课程等。
一些领先的平台正在进入市场,Facebook和Twitter都以YouTube为竞争对手进行了许多努力,他们都具有在分布和广告销售上成为YouTube和Google竞争对手的潜力。对于Facebook,它也许会改写整个视频广告的游戏规则并在整体上影响广告的传播。(还记得宝洁公司的「谢谢妈妈」的广告吗?还记得今年夏天开始的冰桶挑战吗?)
其他重量级玩家也会进入市场。据报道,Yahoo在进行一个大的视频计划。在其现有的选择之外,Amazon通过Twitch又有了新的进入视频领域的角度。与此同时,其他传播和信息平台(像刚发布了网页版的WhatsApp)都是视频领域内潜在的竞争者。电视台不久也会加入到这场竞争中来。在线视频产业会呈现非常激烈的竞争状态。
一些启示是:
√ 在传统广告之外,视频会出现新的商业模式。事实上,如果没有YouTube和Facebook的规模,各平台就要寻找更具创意的赚钱方式,不管是通过订阅,微支付,独家预览,社区福利还是其他什么方式。
√ 视频广告自身也会改变成新的传播模式。如果想想目前最主要的视频平台是由一家搜索巨头持有的话,你会发现这点也是成立的。在媒体领域里原生广告的发展状况也会迁移到视频上,毕竟许多视频广告商也一直在担忧他们的品牌定位与UGC内容的兼容性。
√ 平台不关心制作人的时代已经结束了,YouTube的「明星们」为YouTube贡献了大量的点击,但是许多这些点击都没有成为有价值的收入。随着蛋糕越做越大,每个人都需要分到一杯羹。在大部分的媒体商业中,创作者通常会获得收益。对于成功而长期的任何一个连结供应商和消费者的双边市场来说,这都非常重要。
以上的这些还没提到曾经或正在流行的一些媒体形式(比如播客, 动漫等),以及一些全新的平台(VR,AR等),它们能创造出与视频不同的新形式的内容。
我们唯一知道的就是,在线视频前路慢慢,所以哪怕只有一点竞争,事情也会变得非常有趣。
14.保险
保险是在分发风险。随着软件和数据的巨大进步,我们购买并体验保险产品的方式难道不该发生翻天覆地的变革吗?实际上,软件将彻底改写我们购买和体验保险产品的方方面面——医疗,家居,汽车,生活等。具体为:
√ 通过改变保险公司对风险的估价
如今有许多信号可以供保险公司参考,以便他们制定出我们应缴纳的保险费价格。在安全社区小心驾驶的司机与在事故易发路口横冲直撞的司机即使是在上保同一辆车时,也应该支付不同金额——但所有这些数据并不能在全年的里程表读数中看出来。水务(比如漏水)是投保家庭险的客户索赔的主要来源之一:我们为什么不向安装了水传感器的客户收取更少的费用呢,因为如果得知正在漏水,他们可以在得到昂贵的修复之前就阻止它。
新的数据源、更好的数据、持续的数据报告——移动手机和廉价上网设备让这一切成为可能。
√ 通过维系保险公司和投保人间的可持续关系
今天,我们与保险公司的联系基本就是他们每月给我们发送的帐单。因为你的账单上大面积打印着字体相同的大写字母......因为程序当时就是那么写的。
什么样的保险公司能帮助在生活中做出明智的决定?例如:能用导航帮你绕过危险的十字路口的汽车保险公司;当地面上的水接近热水器时,能自动检测并派来管道工维修的家庭保险公司;或者能为你找到同样在减肥健身的朋友的健康保险公司?
通过鼓励我们注意安全,保险公司可以维持较低的支出。一家心系客户利益的保险公司会让我们如沐春风——因为有时候即使大家的利益一致,感觉起来并不是这样。
√ 通过改变保险公司配置资金的方式
从历史上看,我们已经看过共同保险公司(由政策制定者拥有的保险公司)和股票保险公司(股东拥有的保险公司)。我们希望能看到更多众包(人人都可参与)的保险公司,正如我们已经看到金融系统的其他环节一样。既然众包在个人贷款、学生贷款、小企业贷款上表现出色,保险为什么不试试呢?从投资者的角度来看,由于独立于股票或债券市场,这样可以使投资的资产类别多样化。从保险公司的角度来看,它应该是一个便宜的汇集资金的方式。
当然,其中一些的实现需要改变现行的制度。毕竟时代不同了,有些制度不再适用。世界正在改变,让我们一起来改变这死水一般的保险生态系统吧。
15.开发运营(DevOps)
2001年,当一群开发人员聚在一起探讨一套新的软件开发「轻量」方法时,敏捷宣言诞生了。本质上,这份宣言帮助人们编撰整理了各自独立发现的纷繁复杂的知识,这些知识已被Hotmail, Yahoo和其他初代互联网企业证实有效,并最终成为了现在称之为「开发运营」(采用维基百科的说法)的基础:
开发运营(「开发」和「运营」的合成词)是一种强调软件开发人员和信息技术专业人员之间的沟通、协作和整合的一种软件开发方法,作为对软件开发和IT运营之间相互依赖性的一种反应,开发运营旨在帮助企业快速生成软件产品和服务——并提高运营效果。
但是开发运营不仅是一种方法论,而是现代编程人员必须具备的一项技能——并在渐渐成为一个独立部门(当然仍在争议)。
虽然敏捷宣言不是网络/SaaS/云组织迂回发展的直接结果,但是通过强调这些当时的新兴技术对跨部门合作、交流以及更短的发布周期的需求,它还是触动了人们的神经。
超大规模的云数据中心的崛起使得这项工作更加艰难,因为开发人员必须设计出将代码推送到数以千计的平行展开的服务器上的共造工具和复杂脚本。这种复杂的云结构——再加上开发运营活动如今的发展——提供了很多机遇,从帮助开发人员和公司管理整个流程开始,未来还有很大的发挥空间。
16.失败
成功是新的失败。(Success is the new failure.)
“企业的目标不是迅速失败。目标应该是长远的成功。这两件事是不同的。"
以下是16 things的全文摘要
我们不按「主题」投资,我们投资的是拥有突破性创意的创业者。所以我们不会在按照某个行业预设的一些理论进行投资。虽然是这样,但我们也在思考和观察一些事,现在和你们分享。这16个领域是我们会重点关注的投资领域。
(还有一些我们关注的领域之前在其他地方已经提到过了,比如「软件吞噬世界」专题,SaaS专题,和「政府+科技」专题)。
1、虚拟现实(VR)
在虚拟现实的世界里,「相信」是一种默认状态。VR会是终极的输入/输出工具。有些人把VR称作「最后的媒体」,因为任何之后的媒体都可以在VR之内,用软件产生。
2、企业的「传感器化」
智能手机的到来,让我们能在企业服务这件事上产生出更多神奇的事情。
3、机器学习+大数据
过去的商业智能 (Business Intelligence) 表现为对以往的关注(「在肯塔基州已经卖掉了多少双红色鞋子?」),现在我们则需要预测性的观点(「在肯塔基州将要卖掉多少双红色鞋子?」)。重要的是,机器学习并不是目的本身…它是每个应用的一个「属性」。它并不是一个独立的功能。
4、全栈型创业公司
传统的创业公司采取的方式是向企业兜售他们的新技术或者寻求授权。新的全栈创业公司则建造了一个完整的、端到端的产品或者服务从而绕开实体企业或者竞争者。比如Uber或者Tesla。
5、 Containers(容器)
Container可以在不倚仗中间层的情况下运用智能化控制实现应用程序的独立存在和独立运行。
6、数字健康
现在你会毫不犹豫地接受这样一个事实:车库里的没有什么学历的男孩可以写出一个前端程序来分析你的邮件,告诉你何时是最佳的回复时间,或用你的邮件数据做出一些有趣,意想不到又很有价值的事。明天呢?也许你很快就会开始更多地依赖车间里开发出的iPhone应用而不是医生来分析你的个人诊断数据了。
7. 在线市场
eBay和Craigslist的时代正在过去,新时代的在线市场平台正在到来。
8. 安全
传统的数据安全公司都是针对我们的个人数据中心或者个人电脑提供保护。当无法再用防火墙保护数据的时候我们该怎么办?我们要怎样去保护手机和云储存里的数据?
9. 比特币和Blockchain
比特币与传统汇款系统不同,就像互联网和电话网络不同一样。你不能指望1988年的电话线路一天能容纳数以百万的推送和点赞,传送几个G的文件或P2P应用。此外,比特币的主要用途不再只是实现「更好的电子转账」 ,就像互联网不再主要用于拨打长途语音电话而已。
10. 云-客户端计算
如今通过智能手机我们手里掌握了比几十年前大型计算机时代更强大的处理能力,所以为什么不能将云上的处理转移回端点,转移到手机上呢?
11.众筹
众筹和我们手机上其他一切事物一样简单易用、查看即时且使用频繁,它将很快成为人们实现自己想法的重要方式——不管是大创意还是小灵感。众筹将成为我们调动集体财务力量的途径。
12. 物联网(Internet of Things)
一个有趣的问题是,如果给任何一个物品装上链接网络的开关,会发生些什么。
13. 在线视频
YouTube很伟大,但它更有太多的缺陷。
14. 保险
新的数据源、更好的数据、持续的数据报告——移动手机和廉价上网设备让更好的保险计划成为可能。
15. 开发运营(DevOps)
超大规模的云数据中心的崛起使得这项工作更加艰难,因为开发人员必须设计出将代码推送到数以千计的平行展开的服务器上的共造工具和复杂脚本。这种复杂的云结构——再加上开发运营活动如今的发展——提供了很多机遇。
16. 失败
「企业的目标不是迅速失败。目标应该是长远的成功。这两件事是不同的。」